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Germany 
5 Instituut voor Theoretische Fysica, Universiteit Nijmegen, Toernooiveld, Nijmegen, 
Netherlands 

Received 9 August 1976, in final form 30 September 1976 

Abstract. A lower-bound renormalization transformation of the type introduced by 
Kadanoff is applied to the three-state Potts model. For both d = 2 and d = 3 the Kadanoff 
transformation predicts a continuous transition. Values for the critical exponents and the 
critical temperature are reported. The consistency of the d = 2 results with series estimates 
gives us some confidence in the predictions for d = 3. 

The three-state Potts (1952) model has the Hamiltonian 

Yt = -J c &7iq - c S a L  
(ij) ia 

where i denotes a lattice site and where the spins (T and the index (Y take three values. 
Straley and Fisher (1973) have pointed out that if the model exhibits a continuous 
transition in zero field (5 = 0), the critical point is actually an anomalous tricritical point 
in the T-5 phase diagram. A Landau expansion of the free energy and mean-field 
theory (Mittag and Stephen 1974) predict a first-order rather than a continuous 
transition in zero field. Baxter (1973) has shown that the q-state Potts model on a d  = 2 
square lattice has a first-order transition for 4 > 4  and a higher-order transition tor 
4 s 4 .  Series analyses for q = 3 have been carried out by Ditzian (1974), Ditzian and 
Oitmaa (1974), Enting (1974), Kim and Joseph (1975), Straley (1974), Straley and 
Fisher (1973), and others. There is general agreement that the series indicate a 
continuous transition for d = 2, but for d = 3 opinion is divided. A renormalization- 
group calculation by Golner (1973) using Wilson’s approximate recursion relation 
predicts a first-order transition for d = 3. For a summary of results using the E 

expansion we refer to Priest and Lubensky (1976). 
Position-space renormalization-group methods have been applied to the d = 2 

square-lattice three-state Potts model by Berker and Wortis (1976) and by Dasgupta 
(1976 and unpublished results mentioned in Berker and Wortis 1976). We learned of 
Dasgupta’s work, which is similar to our own, during the preparation of this manuscript, 
which includes results for the d = 3 BCC lattice as well. Ashkin-Teller-Potts models 
with q # 3 have been considered by Dasgupta (1976), Harris et a1 (1975), and Knops 
(1975). The d = 2, q = 3 calculations predict a continuous transition and yield critical 
exponents consistent with the series analyses. The results reported in this letter were 
obtained using a lower-bound position-space transformation of the type invented by 
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Kadanoff (Kadanoff 1975, Kadanoff et a1 1976). Kadanoff ’s transformation has the 
advantages that it can readily be extended to d > 2 and that it is extremely successful in 
predicting the critical exponents of the Ising model for d = 2, 3, 4. The reason why 
Kadanoff’s method works so well for the king model is not fully understood. In 
particular it is not clear what determines the choice between the several critical fixed 
points appearing in Kadanoff’s method because of a special symmetry (Burkhardt 
1976a, Knops 1976). Secondly it appears that certain correction terms arising from a 
more systematic variational procedure should not be taken into account (Kadanoff et a1 
1976, Knops 1976). In the present letter we pragmatically apply Kadanoff’s method 
to the Potts model following the procedure which yields the best results for the Ising 
critical exponents. 

The three-state Potts model is a special case of the Blume-Emery-Griffiths (Blume 
et a1 1971) model. In obtaining the results reported here, we used the spin-1 
lower-bound transformation applied to the Blume-Emery-Griffiths model by 
Burkhardt (1976b), restricting the three variational parameters p to the one-parameter 
subspace p = p o  (1, -2,3), so that the transformation preserves the symmetry of the 
zero-field Potts model under permutations of the three states. 

As in Kadanoff (1975), Kadanoff eta1 (1976) and Burkhardt (1976a,b), we perform 
an exact decimation transformation on the initial Hamiltonian to enter an invariant 
subspace of the Kadanoff transformation in which one only considers interactions 
symmetric in all the spin variables. In the invariant subspace the lower-bound transfor- 
mation has high- and low-temperature fixed points and a Potts tricritical fixed point. 
The valuesp; = 0.8446 (d = 2) and 0.4528 (d = 3) maximize the free energy at the Potts 
fixed point and were used in calculating critical temperatures and exponents. For the 
d = 2 square lattice we find J /kBTo  = 1 e037 for the transition temperature, which 
compares favourably with the exact value 1 e005 obtained by Potts from a duality 
transformation. For the d = 3 BCC lattice our result is J/k,To = 0.4012. 

In the position-space renormalization-group approach a first-order transition is 
associated with a discontinuity fixed point? (Nienhuis and Nauenberg 1975) with 
eigenvalue y = d for each eigen-operator conjugate to a discontinuous order parame- 
ter. For both d = 2 and d = 3 the eigenvalues we find all satisfy y < d and correspond to 
a second- rather than a first-order transition. Table 1 shows the eigenvalues we 
calculate and the related critical exponents. The eigenvalue y4p corresponds to a 
temperature-like direction in the Potts space. The other relevant eigenvalues, which 
are all doubly degenerate as a consequence of the Potts symmetry (Berker and Wortis 
1976), correspond to fields breaking the Potts symmetry. The eigenvalues y,, and y2p 
are connected with the crossover to critical behaviour whereas y 3 ,  and y6p are 
associated with the crossover to normal tricritical behaviour. (The distinction between 
normal and special tricritical behaviour was first made by Straley and Fisher (1973).) 
Some d = 2 series results are listed for comparison. Except in the case of a,, the series 
results are in excellent agreement with our results. We suspect that a,, is closer to our 
calculated value than the series value of Straley and Fisher (1973) since the latter is 
inconsistent with the scaling laws 2 -a = p(S + 1) = y(S + l)/(S - 1). We refer to 
Berker and Wortis (1976) for comparison with the exponents obtained in other d = 2 
position-space renormalization-group calculations. 

That the lower-bound transformation is quite successful in predicting the d = 2 , 3  
king exponents and the d = 2 Potts exponents gives us some confidence in the results 
t This is in contrast to the situation encountered in the c expansion where no true fixed point is expected in the 
symmetric space when the transition is first order (Amit 1976). 
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Table 1. Relevant eigenvalues and critical exponents of the Potts tricritical fixed point. We 
follow the notation of Berker and Wortis (1976). The numbers in parentheses denote series 
results. 

~ ~~ 

Eigenvalue, 
exponent d = 2  d = 3  

y2p= Y l p  1.872 2.511 
1.202 2.071 Y4P 

Y 6 p  = Y 3 p  0.4610 0.8867 
& P  0.3365 (0.05*0.10", 0.286i0.02b) 05514 

14.68 (15.0* 0.04') 5.131 
0.2363 P P  0.1061 (0.10*0.01", 0.105 * 0.005') 

YP 1.451 (1.5 i 0.2", 1.45 * 0.15', 1.42 f 0*05d) 0.9761 
YP+AP 3.009 (3*OOk0.1d) 2.188 

a Straley and Fisher (1973) 
b Zwanzig and Ramshaw (1973, preprint mentioned in Kim and Joseph 1975). 
c Enting (1974). 
d Kim and Joseph (1975). 

S P  

for the d = 3 Potts model. Note that for d = 3 the Potts tricritical exponents ap,  S,, pp 
and yp are close to the mean-field values f, 5 ,  a, and 1 of the normal tricritical exponents 
predicted for d 3 3 by Riedel and Wegner (1972) using renormalization-group argu- 
ments. Many of our d = 3 exponents are consistent with the series estimates of Straley 
(1974); see also Enting (1974). 

In the Potts subspace of variational parameters p = p o  (1, -2 ,3)  we have also found 
fixed points associated with normal critical, normal tricritical, and first-order transitions 
in the Blume-Emery-Griffiths model. These results will be reported in a longer article. 
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